Uncertainty management in multiobjective hydro-thermal self-scheduling under emission considerations
نویسندگان
چکیده
In this paper, a stochastic multiobjective framework is proposed for a day-ahead short-term Hydro Thermal Self-Scheduling (HTSS) problem for joint energy and reserve markets. An efficient linear formulations are introduced in this paper to deal with the nonlinearity of original problem due to the dynamic ramp rate limits, prohibited operating zones, operating services of thermal plants, multi-head power discharge characteristics of hydro generating units and spillage of reservoirs. Besides, system uncertainties including the generating units’ contingencies and price uncertainty are explicitly considered in the stochastic market clearing scheme. For the stochastic modeling of probable multiobjective optimization scenarios, a lattice Monte Carlo simulation has been adopted to have a better coverage of the system uncertainty spectrum. Consequently, the resulting multiobjective optimization scenarios should concurrently optimize competing objective functions including GENeration COmpany’s (GENCO’s) profit maximization and thermal units’ emission minimization. Accordingly, the -constraint method is used to solve the multiobjective optimization problem and generate the Pareto set. Then, a fuzzy satisfying method is employed to choose the most preferred solution among all Pareto optimal solutions. The performance of the presented method is verified in different case studies. The results obtained from -constraint method is compared with those reported by weighted sum method, evolutionary programming-based interactive Fuzzy satisfying method, differential evolution, quantum-behaved particle swarm optimization and hybrid multi-objective cultural algorithm, verifying the superiority of the proposed approach. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Optimal Scheduling of Coordinated Wind-Pumped Storage-Thermal System Considering Environmental Emission Based on GA Based Heuristic Optimization Algorithm
The integration of renewable wind and pumped storage with thermal power generation allows for dispatch of wind energy by generation companies (GENCOs) interested in participation in energy and ancillary services markets. However, to realize the maximum economic profit, optimal coordination and accounting for reduction in cost for environmental emission is necessary. The goal of this study is to...
متن کاملStochastic Short-Term Hydro-Thermal Scheduling Based on Mixed Integer Programming with Volatile Wind Power Generation
This study addresses a stochastic structure for generation companies (GenCoʼs) that participate in hydro-thermal self-scheduling with a wind power plant on short-term scheduling for simultaneous reserve energy and energy market. In stochastic scheduling of HTSS with a wind power plant, in addition to various types of uncertainties such as energy price, spinning /non-spinning reserve prices, unc...
متن کاملRobust optimization based self scheduling of hydro-thermal Genco in smart grids
This paper proposes a robust optimization model for optimal self scheduling of a hydro-thermal generating company. The proposed model is suitable for price taker Gencos which seeks the optimal schedule of its thermal and hydro generating units for a given operating horizon. The uncertainties of electricity prices are modeled using robust optimization approach to make it more practical. It consi...
متن کاملEnergy Scheduling in Power Market under Stochastic Dependence Structure
Since the emergence of power market, the target of power generating utilities has mainly switched from cost minimization to revenue maximization. They dispatch their power energy generation units in the uncertain environment of power market. As a result, multi-stage stochastic programming has been applied widely by many power generating agents as a suitable tool for dealing with self-scheduling...
متن کاملA multi-product vehicle routing scheduling model with time window constraints for cross docking system under uncertainty: A fuzzy possibilistic-stochastic programming
Mathematical modeling of supply chain operations has proven to be one of the most complex tasks in the field of operations management and operations research. Despite the abundance of several modeling proposals in the literature; for vast majority of them, no effective universal application is conceived. This issue renders the proposed mathematical models inapplicable due largely to the fact th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 37 شماره
صفحات -
تاریخ انتشار 2015